
CNT 4714: Java Networking Page 1 Dr. Mark Llewellyn ©

CNT 4714: Enterprise Computing

Fall 2013

Java Networking and the Internet

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cnt4714/fall2013

http://www.cs.ucf.edu/courses/cnt4714/spr2013

CNT 4714: Java Networking Page 2 Dr. Mark Llewellyn ©

Distributed Applications in the Enterprise

• Distributed applications are one of the latest developments of

information technology, which began about 50 years ago, and is

still developing at a very fast pace.

• The first electronic computers available in 1940s and 50s were

reserved for special applications. Many had military applications

such as the encryption and decoding of messages.

• The 1960s witnessed the advent of batch processing, in which

several users could pass their tasks to the computer operator (the

“server”). Once processed, the results were returned to the

“client” by the operator. As there was no interactivity at that time,

computers were used for primarily numerical applications that

required little user input but required a high computational effort.

CNT 4714: Java Networking Page 3 Dr. Mark Llewellyn ©

Distributed Applications in the Enterprise (cont.)

• With the advent of mainframes, interactive applications came into

play. Several users could finally use one computer

simultaneously in time-sharing mode. Tasks were no longer

completed in sequence as with batch processing, but rather

completed in sections.

• The next trend, beginning with the introduction of the PC in 1980,

was the shift in computing power from the central mainframe to

the desktop. Computer performance at levels which were

undreamt of previously, was now available to employees directly

at their desk. Each user could install their own applications to

create an optimally configured work environment. This began the

age of the standardized office packages, which enabled office

automation to be driven forward considerably.

CNT 4714: Java Networking Page 4 Dr. Mark Llewellyn ©

Distributed Applications in the Enterprise (cont.)

• Since the 1990s, the trend has shifted increasingly from distributed

information processing to enterprise computing.

• Previously autonomously operating workstations were integrated

together with central file, database, and application servers,

resulting in huge decentralized clusters, which were used to handle

tasks of a more complicated nature.

• The defining sentence which characterized this phase coined by

Sun Microsystems reads – “The network is the computer.”

• What was it that led to this ever increasing greater importance of

distributed applications?

• There are several reasons commonly cited:

CNT 4714: Java Networking Page 5 Dr. Mark Llewellyn ©

Distributed Applications in the Enterprise (cont.)

1. The cost of chip manufacturing dropped sharply, enabling cheap

mass production of computers.

2. Simultaneously, network technologies were developed with higher

bandwidths – a necessity for the quick transfer of large amounts of

data between several computers.

3. Response times became increasingly longer due to the heavy use

of large mainframes, resulting in excessive waiting times.

4. The availability of a comparable distributed work environment

gave rise to the desire for new applications that were not possible

in a centralized environment. This development led from the first

e-mail applications via the WWW to common use of information

by people in completely different places.

CNT 4714: Java Networking Page 6 Dr. Mark Llewellyn ©

What is a Distributed System?

• While many different definitions of what constitutes a

distributed system have been put forth, there is general

consensus that there are several central components that a

distributed system must contain:

– A set of autonomous computers.

– A communication network, connecting those computers.

– Software which integrates these components with a

communication system.

CNT 4714: Java Networking Page 7 Dr. Mark Llewellyn ©

What is a Distributed System?

Node A Node B

Node C Node D

Machine limits

USER

Software

component

Communication

CNT 4714: Java Networking Page 8 Dr. Mark Llewellyn ©

What is a Distributed Application?

• A distributed application is an application A, the functionality of which

is subdivided into a set of cooperating subcomponents A1, A2, …, An

with n > 1. The subcomponents Ai are autonomous processing units

which can run on different computers and exchange information over

the network controlled by coordination software.

• There are typically three levels defined for a distributed system:

Level 3 Distributed Applications

Level 2 Coordination Software

Level 1 Distributed Computer System

CNT 4714: Java Networking Page 9 Dr. Mark Llewellyn ©

What is a Distributed Application? (cont.)

• The application on level 3 will ideally “know” nothing of

the distribution of the system, as it uses the services of level

2, the administration software that takes over the

coordination of all the components and hides the

complexity from the application.

• In turn, level 2 itself uses the available distributed

computing environment.

As an aside, a more humorous definition of a distributed system was given by

Leslie Lamport (the guy who developed LaTex), who defined a distributed

system as a system “in which my work is affected by the failure of components,

of which I knew nothing previously.”

CNT 4714: Java Networking Page 10 Dr. Mark Llewellyn ©

Important Characteristics of Distributed Systems

• Based on our simple definition, there are several important
characteristics of distributed systems that need a closer
look.

• All of these characteristics are based on the concept of
transparency.

• In the context of information technology, the concept of
transparency literally means that certain things should be
invisible to the user. The manner in which the problem is
solved is largely irrelevant to the user.

• The following transparency properties play a large role in
achieving this result for the user:

CNT 4714: Java Networking Page 11 Dr. Mark Llewellyn ©

Transparency Properties of Distributed Systems

Location Transparency – users do not necessarily need to know where
exactly within the system a resource is located which they wish to
utilize. Resources are typically identified by name, which has no
bearing on their location.

Access Transparency – the way in which a resource is access is uniform
for all resources. For example, in a distributed database system
consisting of several databases of different technologies, there
should also be a common user interface (such as SQL).

Replication Transparency – the face that there may be several copies of a
resource is not disclosed to the user. The user has no need to know
whether they are accessing the original or the copy. The altering of
the resource also must occur transparently.

CNT 4714: Java Networking Page 12 Dr. Mark Llewellyn ©

Transparency Properties of Distributed Systems
(cont.)

Error Transparency – users will not necessarily be informed of all errors

occurring in the system. Some errors may be irrelevant, and others

may well be masked, as in the case of replication.

Concurrency Transparency – distributed systems are usually used by

several users simultaneously. It often happens that two or more

users access the same resource at the same time, such as a database

table, printer, or file. Concurrency transparency ensures that

simultaneous access is feasible without mutual interference or

incorrect results.

Migration Transparency – using this form of transparency, resources can

be moved over the network without the user noticing. A typical

example is today’s mobile telephone network in which the device

can be moved around freely, without any loss of communication

when leaving the vicinity of a sender station.

CNT 4714: Java Networking Page 13 Dr. Mark Llewellyn ©

Transparency Properties of Distributed Systems
(cont.)

Process Transparency – It is irrelevant on which computer a certain task
(process) is executed, provided it is guaranteed that the results are
the same. This form of transparency is an important prerequisite for
the successful implementation of a balanced workload between
computers.

Performance Transparency – when increasing the system load, a dynamic
reconfiguration may well be required. This measure for
performance optimization should be unnoticed by other users.

Scaling Transparency – if a system is to be expanded so as to incorporate
more computers or applications, this should be feasible without
modifying the system structure or application algorithms.

Language Transparency – the programming language in which the
individual subcomponents of the distributed system or application
were created must not play any role in the ensemble. This is a fairly
new requirement of distributed systems and is only supported by
more recently developed systems.

CNT 4714: Java Networking Page 14 Dr. Mark Llewellyn ©

Basic Communication Models

• Communication between the individual components of a

distributed system can occur in two basic ways: using either

shared memory or message passing.

• Shared memory is an indirect form of communication, as

both partners exchanging information do not communicate

directly with each other, but via a third component: the

shared memory.

• Message passing is a direct form of communication

between the sender and receiver by means of a

communication medium. Two functions are generally

available for the execution of message exchange, usually

called send and receive.

CNT 4714: Java Networking Page 15 Dr. Mark Llewellyn ©

Basic Communication Models (cont.)

• Send is defined as: send(r: recevier, m: message)

– This function sends the message m to the receiver r.

• Receive is defined as: receive(s: sender, b: buffer)

– This function waits for a message from sender s and writes it in

buffer b (part of the memory made available for the application

process).

• The basic form of exchange of a single message can be

combined with more complex models. One of the most

important of these models is the client-server model.

– In this model, the communication partners adopt the role of either a

client or a server. A server is assigned to administer access to a

certain resource, while a client wishes to use the resource.

CNT 4714: Java Networking Page 16 Dr. Mark Llewellyn ©

Message Exchange in the Client-Server Model

Client Server

Processing

CNT 4714: Java Networking Page 17 Dr. Mark Llewellyn ©

Advantages and Disadvantages of Distributed

Systems

• When compared to the mainframe approach, distributed

systems offer the following advantages:

– More economical – greater computing power is available at a lower

cost.

– Response times are much shorter.

– Provide a better model of reality than a centralized computer

(consider the information infrastructure of a multinational corp.).

– Distributed systems can be made more reliable than a central

system. Availability of individual components can be enhanced

through replication. Also, the failure of a non-replicated component

does not typically lead to total system failure as with a mainframe.

– Distributed systems can be extended and adapted to increasing

requirements far easier than can a mainframe.

CNT 4714: Java Networking Page 18 Dr. Mark Llewellyn ©

Advantages and Disadvantages of Distributed

Systems (cont.)

• When compared to the conventional PC approach,

distributed systems offer the following advantages:

– Generally speaking, communication between computers can only

occur using a connection. Applications such as e-mail are only

possible using this approach.

– Networking PCs allows common use of both resources and data,

especially hardware resources such as printers and hard drives.

– Unless the PCs are networked, load sharing is not possible, so one

user running two computationally-intensive applications will suffer

even if the adjacent workstation is unused.

CNT 4714: Java Networking Page 19 Dr. Mark Llewellyn ©

Advantages and Disadvantages of Distributed

Systems (cont.)

• There are however, a few problems that arise with

distributed systems:

– The entire system is extremely dependent on transmission performance

and the reliability of the underlying communication network. If the

network is constantly overloaded, then the advantages of a distributed

system are very quickly cancelled out, particularly with respect to

response times.

– Distribution and communication are always an increased security risk in

many ways. Communications can be “snooped”. Physical security of

the system components becomes more difficult. Software issues

concerning modification and piracy become more prevalent.

– Software for both applications and the coordination of application

components becomes more complex leading to greater chance for errors

and higher development costs.

CNT 4714: Java Networking Page 20 Dr. Mark Llewellyn ©

Technical Principles of the Internet

• Communications systems such as the Internet are best

described using layered models because of their complexity.

• Every layer within the model has a certain task, and all layers

together produce a particular communication service for the

user.

• The layers are arranged in hierarchical form. Layers lower in

the hierarchy produce a service used by the higher layers.

The uppermost layer finally combines all lower layer

services and constitutes the interface for applications.

• For the Internet, the so-called Internet reference model is

used and is shown on the next slide.

CNT 4714: Java Networking Page 21 Dr. Mark Llewellyn ©

Internet Reference Model

Telnet HTTP DNS

FTP SMTP NFS SNMP

TCP
Transmission

Control Protocol

UDP
User Datagram

Protocol

IP
Internet Protocol

ICMP
Internet Control Message

IGMP
Internet Group Management

OSPF/RIP
Routing

Information

ARP
Address Resolution

(LLC +)
MAC

RARP
Reverse

Address Resolution

Application

Layer

Transport

Layer

Link Layer

Network Layer

CNT 4714: Java Networking Page 22 Dr. Mark Llewellyn ©

Internet Reference Model (cont.)

• The Link Layer describes the possible sub-networks of the
Internet and their medium access protocols. These are, for
example, Ethernets, token rings, FDDI, or ISDN networks.
To its upper layer, the link layer offers communication
between two computers in the same sub-network as a service.

• The Network Layer unites all the sub-networks to become
the Internet. The service offered involves making
communication possible between any two computers on the
Internet. The network layer accesses the services of the link
layer, in that a connection between two computers in
different networks is put together for many small connections
in the same network.

CNT 4714: Java Networking Page 23 Dr. Mark Llewellyn ©

Internet Reference Model (cont.)

• The Transport Layer oversees the connection of two (or
more) processes between computers communicating with
each other via the network layer.

• The Application Layer makes application-specific services
available for inter-process communication. These
standardized services include e-mail, file transfer and the
World Wide Web.

• Within the layers, protocols are used for the production of a
service. Protocols are instances which can be implements
either in hardware or software, and communicate with their
partner instances in the same levels, but on other computers.
It is only this cooperation that enables the service to be
produced for the next level up.

CNT 4714: Java Networking Page 24 Dr. Mark Llewellyn ©

Internet Reference Model (cont.)

• The TCP/IP Protocol constitutes the core of Internet
communication technology in the transport and network
layers.

• Every computer on the Internet always has an
implementation of both protocols, TCP (Transmission
Control Protocol) and IP (Internet Protocol).

• The task of IP is to transfer data from one Internet computer
(the sender) to another (the receiver). On this basis, TCP
then organizes the communication between the two processes
on these two computers.

CNT 4714: Java Networking Page 25 Dr. Mark Llewellyn ©

Some Important Application Layer

Internet Protocols
• Telnet – makes a terminal emulation available on the remote computer. The

protocol enables logins to other computers using the network.

• HTTP – (Hypertext Transport Protocol) is the underlying protocol of the
World Wide Web. It is responsible for the transfer of hypertext documents.

• SMTP – (Simple Mail Transfer Protocol) is the protocol used for the transfer
of e-mail messages.

• FTP – (File Transfer Protocol) is able to manage filestores on a server and
enables clients to access files.

• SNMP – (Simple Network Management Protocol) is used for network
management on the Internet.

• DNS – (Domain Name Service) is responsible for the mapping of symbolic
names to IP addresses.

• NFS – (Network File System) makes the basic functionality for a distributed
file system available.

CNT 4714: Java Networking Page 26 Dr. Mark Llewellyn ©

Basic Constituents of Web Applications

• In order to access the Web, first a web server is required. The server
administers the entire data material intended for publication on the
Web.

• The web server is also responsible for replying to client requests, by
delivering the desired documents according to the entitlement of the
client.

• Web servers usually record all Web files access, so different analyses
can be made using the log files created, from the simplest of tasks
such as how many hits have been made in a certain time period, or an
analysis of the geographical distribution of users, to more
sophisticated tasks such as monitoring attempts at unauthorized
access.

• Web servers might also start other programs executing, with which
additional information can be obtained or generated. It is this
capability that forms the basis of all distributed applications on the
WWW.

CNT 4714: Java Networking Page 27 Dr. Mark Llewellyn ©

Basic Constituents of Web Applications (cont.)

• The communication between client and server on the WWW takes
place using the HTTP protocol.

• HTTP is a purely text-based protocol. This means that the requests
for a document are transferred by the client to the server using a
“readable” command such as “get”. The server responds to the
request by making the requested document available to the client,
together with a header giving further information. The server may
sometimes respond with an error message, such as if the requested
document is not available or the user does not have the proper
permission to view the document.

• This protocol is illustrated on the next page. HTTP uses the TCP
service for the actual transfer of data between client and server. For
every transfer of a Web document, a TCP connection is first
established, via which HTTP protocol messages are transferred.
(Actually, the TCP connection persists over several HTTP requests.)

CNT 4714: Java Networking Page 28 Dr. Mark Llewellyn ©

The Architecture of a Web Service

Client

WWW browser

(Internet Explorer)

HTTP

TCP

Server

WWW server

(Apache)

HTTP

TCP

Port 80

Request: Get http://cs.ucf.edu/courses/cnt4714/spr2013/index.html

Response: file html contents

CNT 4714: Java Networking Page 29 Dr. Mark Llewellyn ©

Construction of Web Applications

• The simplest form of an application on the WWW is that in which the
provider places a number of static documents on a server.

• A static document is a document which can only be changed from
outside, by human intervention.

• Clearly, this prototype is not flexible. As soon as information has to
be modified on the server, a slow and cost-intensive process is
required. For many applications, this process is simply not an option.
Consider, for example, a provider that publishes current weather
information. Since this information is constantly changing, an
employee would need to be constantly updating the web pages.

• There are a number of approaches today which allow for the dynamic
creation of web pages, some of which are already fairly old and
others are relatively new. Among the newer of these are Java
Servlets and Java Server Pages that we will see later in the semester.

CNT 4714: Java Networking Page 30 Dr. Mark Llewellyn ©

The Architecture of Distributed Web Applications

• There are basically four major components which can or could
constitute a distributed application on the Internet. These are:

1. The presentation interface to the user, as well as access programs to
server components.

2. An access interface to server components.

3. The server application logic.

4. File storage, databases, etc.

• In distributed applications, these four generic components can be
distributed on the physical nodes of the system in different
configurations.

• The term n-tier architecture was coined for the different variants that
can be produced. The term indicates the number of levels on which
the components are distributed. In practice, 2-, 3-, and 4-tier
architectures are used.

CNT 4714: Java Networking Page 31 Dr. Mark Llewellyn ©

A Two-Tier Architecture
• The simplest version is the 2-tier architecture in which the presentation components

are placed on the client computers, and all other components reside on one server
computer. The most common example of this is TCP based client-server
applications in which databases are accessed directly from the server process.

server

Tier 1: Presentation Level
Tier 2: Applications and data

CNT 4714: Java Networking Page 32 Dr. Mark Llewellyn ©

A Three-Tier Architecture

• The 3-tier architecture goes one step further, so that the actual
applications are separated from data stocks. This is the common
configuration for most servlet applications.

server

Tier 1: Presentation

Tier 2: Applications

server or web server

with applications

objects

database

Tier 3: Databases and

legacy applications

database

CNT 4714: Java Networking Page 33 Dr. Mark Llewellyn ©

A Four-Tier Architecture
• The 4-tier architecture refines the 3-tier version by partitioning the

server interface from the applications. Although not as common as
the 3-tier version, this is the common configuration for many
CORBA applications.

server

Tier 1: Presentation

Tier 2

Web server

database

Tier 4: Databases

database

server

server

Tier 3: Applications Servers

database

CNT 4714: Java Networking Page 34 Dr. Mark Llewellyn ©

Thin Clients

• The extensive partitioning of the architecture of a distributed system
into different components with respectively different areas of
responsibility, basically allows for the creation of simpler and
therefore more controllable individual components.

• The result of this on the client side is the development of thin clients.
A thin client is a client program which contains almost no application
logic, but offers only the presentation interface to the actual
application program, which may run in a distributed fashion on
several servers.

• While the application is executed and the graphical interface is in use,
application logic is partly loaded on the client computer and executed
there locally. However, it is not loaded from the local hard drive, but
always by a server via the network.

• The most common version of a thin client today is a web browser. A
web browser has no information whatsoever on specific applications.

CNT 4714: Java Networking Page 35 Dr. Mark Llewellyn ©

Thin Clients (cont.)

• A web browser is only able to represent web pages, and possibly
execute applets.

• If a certain application is to be used, then the corresponding web
pages must be loaded by a web server.

• The use of thin clients has several advantages (as opposed to
heavy clients):

– The installation of program components on the client computer is
unnecessary. Neither a reconfiguration of the computer nor regular
updates of client software are required.

– Users do not have to adjust to a new user interface for every
distributed application. Access is always made using a well-known
web browser interface. This renders a potentially large amount of
training unnecessary.

– Client computers can, on the whole, be equipped more inexpensively,
as large hard drives for storing application programs are not needed.

CNT 4714: Java Networking Page 36 Dr. Mark Llewellyn ©

Networking

• Java’s fundamental networking capabilities are declared
by classes and interfaces of the java.net package,
through which Java offers stream-based communications.

• The classes and interfaces of java.net also offer
packet-based communications for transmitting individual
packets of information. This is most commonly used to
transmit audio and video over the Internet.

• We will focus on both sides of the client-server
relationship.

• The client requests that some action be performed, and the
server performs the action and responds to the client.

CNT 4714: Java Networking Page 37 Dr. Mark Llewellyn ©

Networking (cont.)

• A common implementation of the request-response
model is between Web browsers and Web servers.

– When a user selects a Web site to browse through a
browser (a client application), a request is sent to the
appropriate Web server (the server application). The
server normally responds to the client by sending the
appropriate HTML Web page.

CNT 4714: Java Networking Page 38 Dr. Mark Llewellyn ©

java.net

• “High-level” APIs

– Implement commonly used protocols such as HTML, FTP, etc.

• “Low-level” APIs

– Socket-based communications

• Applications view networking as streams of data

• Connection-based protocol

• Uses TCP (Transmission Control Protocol)

– Packet-based communications

• Individual packets transmitted

• Connectionless service

• Uses UDP (User Datagram Protocol)

CNT 4714: Java Networking Page 39 Dr. Mark Llewellyn ©

Internet Reference Model

Application Layer
(HTTP, FTP, DNS, etc.)

Transport Layer
(TCP, UDP)

Network Layer
(IP)

Link and Physical Layer

See page 21 for a more detailed version of this diagram.

CNT 4714: Java Networking Page 40 Dr. Mark Llewellyn ©

Sockets
• Java’s socket-based communications enable applications

to view networking as if it were file I/O. In other words, a
program can read from a socket or write to a socket as
simply as reading from a file or writing to a file.

• A socket is simply a software construct that represents one
endpoint of a connection.

• Stream sockets enable a process to establish a connection
with another process. While the connection is in place,
data flows between the processes in continuous streams.

• Stream sockets provide a connection-oriented service.
The protocol used for transmission is the popular TCP
(Transmission Control Protocol). Provides reliable , in-
order byte-stream service

CNT 4714: Java Networking Page 41 Dr. Mark Llewellyn ©

Sockets (cont.)

• Datagram sockets transmit individual packets of
information. This is typically not appropriate for use by
everyday programmers because the transmission protocol
is UDP (User Datagram Protocol).

• UDP provides a connectionless service. A connectionless
service does not guarantee that packets arrive at the
destination in any particular order.

• With UDP, packets can be lost or duplicated. Significant
extra programming is required on the programmer’s part
to deal with these problems.

• UDP is most appropriate for network applications that do
not require the error checking and reliability of TCP.

CNT 4714: Java Networking Page 42 Dr. Mark Llewellyn ©

Sockets (cont.)

• Under UDP there is no “connection” between the server
and the client. There is no “handshaking”.

• The sender explicitly attaches the IP address and port of
the destination to each packet.

• The server must extract the IP address and port of the
sender from the received packet.

• From an application viewpoint, UDP provides unreliable
transfer of groups of bytes (“datagrams”) between client
and server.

CNT 4714: Java Networking Page 43 Dr. Mark Llewellyn ©

Example: client/server socket interaction via UDP

Server (running on hostid)

create socket, port=x

for incoming request:

serverSocket = DatagramSocket()

read request from serverSocket

Write reply to serverSocket

specifying client host address, port

number

Client

create socket

clientSocket = DatagramSocket()

create, address(hostid, port=x)

send datagram request using clientSocket

read reply from clientSocket

close clientSocket

CNT 4714: Java Networking Page 44 Dr. Mark Llewellyn ©

Example: Java server using UDP

import java.io.*;

import java.net.*;

class UDPServer {

public static void main(String args[]) throws Exception

{

//Create datagram socket on port 9876

DatagramSocket serverSocket = new DatagramSocket(9876);

byte[] sendData = new byte[1024];

byte[] receiveData = new byte[1024];

while (true)

{

//create space for the received datagram

DatagramPacket receivePacket = new

DatagramPacket(receiveData,

receiveData.length);

//receive the datagram

serverSocket.receive(receivePacket);

String sentence = new String(receivePacket.getData());

CNT 4714: Java Networking Page 45 Dr. Mark Llewellyn ©

Example: Java server using UDP (cont.)

//get IP address and port number of sender

InetAddress IPAddress = receivePacket.getAddress();

int port = receivePacket.getPort();

String capitalizedSentence =

sentence.toUpperCase();

sendData = capitalizedSentence.getBytes();

//create datagram to send to client

DatagramPacket sendPacket = new

DatagramPacket(sendData, sendData.length, IPAddress, port);

//write out the datagram to the socket

serverSocket.send(sendPacket);

} //end while loop

}

}

CNT 4714: Java Networking Page 46 Dr. Mark Llewellyn ©

Example: Java client using UDP

import java.io.*;

import java.net.*;

class UDPClient {

public static void main(String args[]) throws Exception

{

//Create input stream

BufferedReader inFromUser = new BufferedReader(new

InputStreamReader(System.in));

//Create client socket

DatagramSocket clientSocket = new DatagramSocket();

//Translate hostname to IP address using DNS

InetAddress IPAddress = InetAddress.getByName("localhost");

byte[] sendData = new byte[1024];

byte[] receiveData = new byte[1024];

String sentence = inFromUser.readLine();

sendData = sentence.getBytes();

CNT 4714: Java Networking Page 47 Dr. Mark Llewellyn ©

Example: Java client using UDP (cont.)

DatagramPacket sendPacket = new DatagramPacket(sendData,

sendData.length, IPAddress, 9876);

clientSocket.send(sendPacket);

DatagramPacket receivePacket = new DatagramPacket(receiveData,

receiveData.length);

clientSocket.receive(receivePacket);

String modifiedSentence = new String(receivePacket.getData());

System.out.println("FROM SERVER: " + modifiedSentence);

clientSocket.close();

}

}

Try executing these two applications on your machine and see how it works. The

code for both the server and the client are on the code page.

CNT 4714: Java Networking Page 48 Dr. Mark Llewellyn ©

Client sends a message

(datagram) to the server

Start a UDP client

executing

Start UDP server

executing

Server responds by

returning the datagram to

the client in all capital

letters

Same thing for a second

client – simultaneously

executing with the first

client

CNT 4714: Java Networking Page 49 Dr. Mark Llewellyn ©

Socket Programming with TCP

• Server process must first be running (must have created a
socket). Recall that TCP is not connectionless.

• Client contacts the server by creating client-local socket
specifying IP address and port number of server process.
Client TCP establishes connection to server TCP.

• When contacted by client, server TCP creates a new
socket for server process to communicate with client.

– Allows server to talk with multiple clients

– Source port numbers used to distinguish clients

• From application viewpoint: TCP provides reliable, in-
order transfer of bytes (“pipe”) between client and server.

CNT 4714: Java Networking Page 50 Dr. Mark Llewellyn ©

Establishing a Simple Server Using Stream Sockets

Five steps to create a simple stream server in Java:

1. ServerSocket object. Registers an available port and a maximum
number of clients.

2. Each client connection handled with a Socket object. Server blocks
until client connects.

3. Sending and receiving data

• OutputStream to send and InputStream to receive data.

• Methods getInputStream and getOutputStream on
Socket object.

4. Process phase. Server and client communicate via streams.

5. Close streams and connections.

CNT 4714: Java Networking Page 51 Dr. Mark Llewellyn ©

Establishing a Simple Client Using Stream Sockets

Four steps to create a simple stream client in Java:

1. Create a Socket object for the client.

2. Obtains Socket’s InputStream and OutputStream.

3. Process information communicated.

4. Close streams and Socket.

CNT 4714: Java Networking Page 52 Dr. Mark Llewellyn ©

Example: client/server socket interaction via TCP

Server (running on hostid)

create socket, port=x

for incoming request:

welcomeSocket = ServerSocket()

wait for incoming connection

request

conncectionSocket =

welcomeSocket.accept()

read request from connectionSocket

write reply to connectionSocket

close connectionSocket

Client

create socket

Connect to hostid, port = x

clientSocket = Socket()

send request using clientSocket

read reply from clientSocket

close clientSocket

TCP connection setup

CNT 4714: Java Networking Page 53 Dr. Mark Llewellyn ©

Example: Java server using TCP

//simple server application using TCP

import java.io.*;

import java.net.*;

class TCPServer {

public static void main (String args[]) throws Exception

{

String clientSentence;

String capitalizedSentence;

//create welcoming socket at port 6789

ServerSocket welcomeSocket = new ServerSocket(6789);

while (true) {

//block on welcoming socket for contact by a client

Socket connectionSocket = welcomeSocket.accept();

//create input stream attached to socket

BufferedReader inFromClient = new BufferedReader(new

InputStreamReader

(connectionSocket.getInputStream()));

CNT 4714: Java Networking Page 54 Dr. Mark Llewellyn ©

Example: Java server using TCP (cont.)

//create output stream attached to socket

DataOutputStream outToClient = new

DataOutputStream(connectionSocket.getOutputStream());

//read in line from the socket

clientSentence = inFromClient.readLine();

//process

capitalizedSentence = clientSentence.toUpperCase() + '\n';

//write out line to socket

outToClient.writeBytes(capitalizedSentence);

}

}

}

CNT 4714: Java Networking Page 55 Dr. Mark Llewellyn ©

Example: Java client using TCP

//simple client application using TCP

import java.io.*;

import java.net.*;

class TCPClient {

public static void main (String args[]) throws Exception

{

String sentence;

String modifiedSentence;

//create input stream

BufferedReader inFromUser = new BufferedReader(new

InputStreamReader(System.in));

//create client socket and connect to server

Socket clientSocket = new Socket("localhost", 6789);

//create output stream attached to socket

DataOutputStream outToServer = new

DataOutputStream(clientSocket.getOutputStream());

CNT 4714: Java Networking Page 56 Dr. Mark Llewellyn ©

Example: Java client using TCP (cont.)

//create input stream attached to socket

BufferedReader inFromServer = new BufferedReader(new

InputStreamReader (clientSocket.getInputStream()));

sentence = inFromUser.readLine();

//send line to the server

outToServer.writeBytes(sentence + '\n');

//read line coming back from the server

modifiedSentence = inFromServer.readLine();

System.out.println("FROM SERVER: " + modifiedSentence);

clientSocket.close();

}

}

CNT 4714: Java Networking Page 57 Dr. Mark Llewellyn ©

Start TCP Server

executing

Start a TCP Client

executing and send

message to server.

Server responds and client

process terminates. The

server is still executing.

Another client begins

execution and the cycle

repeats.

CNT 4714: Java Networking Page 58 Dr. Mark Llewellyn ©

A More Sophisticated TCP Client/Server

Example Using GUIs

• Over the next few pages you will find the Java code

for a more sophisticated client/server example.

• This example utilizes a GUI and makes things a bit

more interesting from the programming point of

view.

• Server process appears on pages 59-66. Server test

process appears on page 75.

• Client process appears on pages 67-74. Client test

process appears on page 76.

CNT 4714: Java Networking Page 59 Dr. Mark Llewellyn ©

Sample Code: Java server using TCP with GUI

// TCPServerGUI.java

// Set up a TCP Server that will receive a connection from a client, send

// a string to the client, and close the connection. GUI Version

import java.io.EOFException;

import java.io.IOException;

import java.io.ObjectInputStream;

import java.io.ObjectOutputStream;

import java.net.ServerSocket;

import java.net.Socket;

import java.awt.BorderLayout;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import javax.swing.JFrame;

import javax.swing.JScrollPane;

import javax.swing.JTextArea;

import javax.swing.JTextField;

import javax.swing.SwingUtilities;

public class TCPServerGUI extends JFrame

{

private JTextField enterField; // inputs message from user

private JTextArea displayArea; // display information to user

private ObjectOutputStream output; // output stream to client

private ObjectInputStream input; // input stream from client

Page 1: Server

CNT 4714: Java Networking Page 60 Dr. Mark Llewellyn ©

private ServerSocket server; // server socket

private Socket connection; // connection to client

private int counter = 1; // counter of number of connections

// set up GUI

public TCPServerGUI()

{

super(“TCP Server");

enterField = new JTextField(); // create enterField

enterField.setEditable(false);

enterField.addActionListener(

new ActionListener()

{

// send message to client

public void actionPerformed(ActionEvent event)

{

sendData(event.getActionCommand());

enterField.setText("");

} // end method actionPerformed

} // end anonymous inner class

); // end call to addActionListener

add(enterField, BorderLayout.NORTH);

Page 2: Server

CNT 4714: Java Networking Page 61 Dr. Mark Llewellyn ©

displayArea = new JTextArea(); // create displayArea

add(new JScrollPane(displayArea), BorderLayout.CENTER);

setSize(300, 150); // set size of window

setVisible(true); // show window

} // end Server constructor

// set up and run server

public void runServer()

{

try // set up server to receive connections; process connections

{

server = new ServerSocket(12345, 100); // create ServerSocket

while (true)

{

try

{

waitForConnection(); // wait for a connection

getStreams(); // get input & output streams

processConnection(); // process connection

} // end try

catch (EOFException eofException)

{

Page 3: Server

CNT 4714: Java Networking Page 62 Dr. Mark Llewellyn ©

displayMessage("\nServer terminated connection");

} // end catch

finally

{

closeConnection(); // close connection

counter++;

} // end finally

} // end while

} // end try

catch (IOException ioException)

{

ioException.printStackTrace();

} // end catch

} // end method runServer

// wait for connection to arrive, then display connection info

private void waitForConnection() throws IOException

{

displayMessage("Waiting for connection\n");

connection = server.accept(); // allow server to accept connection

displayMessage("Connection " + counter + " received from: " +

connection.getInetAddress().getHostName());

} // end method waitForConnection

Page 4: Server

CNT 4714: Java Networking Page 63 Dr. Mark Llewellyn ©

// get streams to send and receive data

private void getStreams() throws IOException

{

// set up output stream for objects

output = new ObjectOutputStream(connection.getOutputStream());

output.flush(); // flush output buffer to send header information

// set up input stream for objects

input = new ObjectInputStream(connection.getInputStream());

displayMessage("\nGot I/O streams\n");

} // end method getStreams

// process connection with client

private void processConnection() throws IOException

{

String message = "Connection successful";

sendData(message); // send connection successful message

// enable enterField so server user can send messages

setTextFieldEditable(true);

Page 5: Server

CNT 4714: Java Networking Page 64 Dr. Mark Llewellyn ©

do // process messages sent from client

{

try // read message and display it

{

message = (String) input.readObject(); // read new message

displayMessage("\n" + message); // display message

} // end try

catch (ClassNotFoundException classNotFoundException)

{

displayMessage("\nUnknown object type received");

} // end catch

} while (!message.equals("CLIENT>>> TERMINATE"));

} // end method processConnection

// close streams and socket

private void closeConnection()

{

displayMessage("\nTerminating connection\n");

setTextFieldEditable(false); // disable enterField

try

{

output.close(); // close output stream

input.close(); // close input stream

connection.close(); // close socket

} // end try

Page 6: Server

CNT 4714: Java Networking Page 65 Dr. Mark Llewellyn ©

catch (IOException ioException)

{

ioException.printStackTrace();

} // end catch

} // end method closeConnection

// send message to client

private void sendData(String message)

{

try // send object to client

{

output.writeObject("SERVER>>> " + message);

output.flush(); // flush output to client

displayMessage("\nSERVER>>> " + message);

} // end try

catch (IOException ioException)

{

displayArea.append("\nError writing object");

} // end catch

} // end method sendData

// manipulates displayArea in the event-dispatch thread

private void displayMessage(final String messageToDisplay)

{

SwingUtilities.invokeLater(

new Runnable()

Page 7: Server

CNT 4714: Java Networking Page 66 Dr. Mark Llewellyn ©

{

public void run() // updates displayArea

{

displayArea.append(messageToDisplay); // append message

} // end method run

} // end anonymous inner class

); // end call to SwingUtilities.invokeLater

} // end method displayMessage

// manipulates enterField in the event-dispatch thread

private void setTextFieldEditable(final boolean editable)

{

SwingUtilities.invokeLater(

new Runnable()

{

public void run() // sets enterField's editability

{

enterField.setEditable(editable);

} // end method run

} // end inner class

); // end call to SwingUtilities.invokeLater

} // end method setTextFieldEditable

} // end class TCPServerGUI

Page 8: Server

CNT 4714: Java Networking Page 67 Dr. Mark Llewellyn ©

Sample Code: Java client using TCP with GUI
// TCPClientGUI.java

// Client that reads and displays information sent from a Server.

import java.io.EOFException;

import java.io.IOException;

import java.io.ObjectInputStream;

import java.io.ObjectOutputStream;

import java.net.InetAddress;

import java.net.Socket;

import java.awt.BorderLayout;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import javax.swing.JFrame;

import javax.swing.JScrollPane;

import javax.swing.JTextArea;

import javax.swing.JTextField;

import javax.swing.SwingUtilities;

public class TCPClientGUI extends JFrame

{

private JTextField enterField; // enters information from user

private JTextArea displayArea; // display information to user

private ObjectOutputStream output; // output stream to server

private ObjectInputStream input; // input stream from server

private String message = ""; // message from server

private String chatServer; // host server for this application

Page 1: Client

CNT 4714: Java Networking Page 68 Dr. Mark Llewellyn ©

private Socket client; // socket to communicate with server

// initialize chatServer and set up GUI

public TCPClientGUI(String host)

{

super(“TCP Client");

chatServer = host; // set server to which this client connects

enterField = new JTextField(); // create enterField

enterField.setEditable(false);

enterField.addActionListener(

new ActionListener()

{

// send message to server

public void actionPerformed(ActionEvent event)

{

sendData(event.getActionCommand());

enterField.setText("");

} // end method actionPerformed

} // end anonymous inner class

); // end call to addActionListener

add(enterField, BorderLayout.NORTH);

Page 2: Client

CNT 4714: Java Networking Page 69 Dr. Mark Llewellyn ©

displayArea = new JTextArea(); // create displayArea

add(new JScrollPane(displayArea), BorderLayout.CENTER);

setSize(300, 150); // set size of window

setVisible(true); // show window

} // end Client constructor

// connect to server and process messages from server

public void runClient()

{

try // connect to server, get streams, process connection

{

connectToServer(); // create a Socket to make connection

getStreams(); // get the input and output streams

processConnection(); // process connection

} // end try

catch (EOFException eofException)

{

displayMessage("\nClient terminated connection");

} // end catch

catch (IOException ioException)

{

ioException.printStackTrace();

} // end catch

Page 3: Client

CNT 4714: Java Networking Page 70 Dr. Mark Llewellyn ©

finally

{

closeConnection(); // close connection

} // end finally

} // end method runClient

// connect to server

private void connectToServer() throws IOException

{

displayMessage("Attempting connection\n");

// create Socket to make connection to server

client = new Socket(InetAddress.getByName(chatServer), 12345);

// display connection information

displayMessage("Connected to: " +

client.getInetAddress().getHostName());

} // end method connectToServer

// get streams to send and receive data

private void getStreams() throws IOException

{

// set up output stream for objects

output = new ObjectOutputStream(client.getOutputStream());

output.flush(); // flush output buffer to send header information

Page 4: Client

CNT 4714: Java Networking Page 71 Dr. Mark Llewellyn ©

// set up input stream for objects

input = new ObjectInputStream(client.getInputStream());

displayMessage("\nGot I/O streams\n");

} // end method getStreams

// process connection with server

private void processConnection() throws IOException

{

// enable enterField so client user can send messages

setTextFieldEditable(true);

do // process messages sent from server

{

try // read message and display it

{

message = (String) input.readObject(); // read new message

displayMessage("\n" + message); // display message

} // end try

catch (ClassNotFoundException classNotFoundException)

{

displayMessage("\nUnknown object type received");

} // end catch

} while (!message.equals("SERVER>>> TERMINATE"));

} // end method processConnection

Page 5: Client

CNT 4714: Java Networking Page 72 Dr. Mark Llewellyn ©

// close streams and socket

private void closeConnection()

{

displayMessage("\nClosing connection");

setTextFieldEditable(false); // disable enterField

try

{

output.close(); // close output stream

input.close(); // close input stream

client.close(); // close socket

} // end try

catch (IOException ioException)

{

ioException.printStackTrace();

} // end catch

} // end method closeConnection

// send message to server

private void sendData(String message)

{

try // send object to server

{

output.writeObject("CLIENT>>> " + message);

output.flush(); // flush data to output

displayMessage("\nCLIENT>>> " + message);

} // end try

Page 6: Client

CNT 4714: Java Networking Page 73 Dr. Mark Llewellyn ©

catch (IOException ioException)

{

displayArea.append("\nError writing object");

} // end catch

} // end method sendData

// manipulates displayArea in the event-dispatch thread

private void displayMessage(final String messageToDisplay)

{

SwingUtilities.invokeLater(

new Runnable()

{

public void run() // updates displayArea

{

displayArea.append(messageToDisplay);

} // end method run

} // end anonymous inner class

); // end call to SwingUtilities.invokeLater

} // end method displayMessage

Page 7: Client

CNT 4714: Java Networking Page 74 Dr. Mark Llewellyn ©

// manipulates enterField in the event-dispatch thread

private void setTextFieldEditable(final boolean editable)

{

SwingUtilities.invokeLater(

new Runnable()

{

public void run() // sets enterField's editability

{

enterField.setEditable(editable);

} // end method run

} // end anonymous inner class

); // end call to SwingUtilities.invokeLater

} // end method setTextFieldEditable

} // end class TCPClientGUI

Page 8: Client

CNT 4714: Java Networking Page 75 Dr. Mark Llewellyn ©

Sample Code: Java server test

// TCPServerTest.java

// Test the TCPServerGUI application. GUI Version

import javax.swing.JFrame;

public class TCPServerTest

{

public static void main(String args[])

{

TCPServerGUI application = new TCPServerGUI(); // create server

application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

application.runServer(); // run server application

} // end main

} // end class TCPServerTest

CNT 4714: Java Networking Page 76 Dr. Mark Llewellyn ©

Sample Code: Java client test
// TCPClientTest.java

// Test the TCPClientGUI class. GUI Version

import javax.swing.JFrame;

public class TCPClientTest

{

public static void main(String args[])

{

TCPClientGUI application; // declare client application

// if no command line args

if (args.length == 0)

application = new TCPClientGUI("127.0.0.1"); // connect to localhost

else

application = new TCPClientGUI(args[0]); // use args to connect

application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

application.runClient(); // run client application

} // end main

} // end class TCPClientTest

Special IP address

to designate

localhost.

CNT 4714: Java Networking Page 77 Dr. Mark Llewellyn ©

Sample Screen Shots Illustrating Client/Server Processes

Server process initialized and

waiting for a client connection.

Client process

attempts connection

to localhost.

Server responds.

Connection to server on

localhost is successful.

Stream connection is now

established between server

and client.

CNT 4714: Java Networking Page 78 Dr. Mark Llewellyn ©

Sample Screen Shots Illustrating Client/Server Processes (cont.)
Client sends a message to the

server.

Server message from the client

process.

Server responds to client.

CNT 4714: Java Networking Page 79 Dr. Mark Llewellyn ©

Sample Screen Shots Illustrating Client/Server Processes (cont.)

Client issues message to terminate

connection.

Server receives request from

Client to terminate connection.

Server responds by terminating

connection and then blocking to

await a subsequent connection.

Message from Server

that Client terminated

connection and that

the connection is

now closed.

CNT 4714: Java Networking Page 80 Dr. Mark Llewellyn ©

Sample Screen Shots Illustrating Client/Server Processes (cont.)

Server accepts a second connection

and is now connected to the second

client process.

A subsequent connection request

from another Client process is

accepted by the Server. Server

indicates that this is the second

connection received from a

client.

CNT 4714: Java Networking Page 81 Dr. Mark Llewellyn ©

Using Java’s High-level Networking

Capabilities
• As we saw earlier, the TCP and UDP protocols are at the

transport layer within the Internet Reference Model. As far as

Java is concerned, these provide “low-level” networking

capability.

• Java also provides application layer networking protocol

capabilities to allow for communication between applications.

• In the examples we have seen so far, it was the developer’s

responsibility to establish a connection between the client and

the server (in the case of the UDP protocol, its more a process

of establishing the sockets since there is no connection

between the client and the server in this protocol).

CNT 4714: Java Networking Page 82 Dr. Mark Llewellyn ©

Using Java’s High-level Networking

Capabilities (cont.)

• The next example illustrate Java’s application layer
capabilities which remove the responsibility of
establishing the network connection from the
developer.

• The example relies on a Web browser to establish the
communication link to a Web server. (This one uses
an applet to open a specific URL. Using a URL as an
argument to the showDocument method of
interface AppletContext, causes the browser in
which the applet is executing to display that
resource.)

CNT 4714: Java Networking Page 83 Dr. Mark Llewellyn ©

Example 1 – SiteSelector Applet

<html>

<title>Site Selector</title>

<body>

<applet code = "SiteSelector.class" width = "300" height = "75">

<param name = "title0" value = "Java Home Page">

<param name = "location0" value = "http://www.java.sun.com/">

<param name = "title1" value = "CNT 47174 Home Page">

<param name = "location1" value = "http://www.cs.ucf.edu/courses/cnt4714/fall2013">

<param name = "title2" value = "World Cycling News">

<param name = "location2" value = "http://www.cyclingnews.com/">

<param name = "title3" value = "Formula 1 News">

<param name = "location3" value = "http://www.formula1.com/">

</applet>

</body>

</html>

HTML document to load the SiteSelctor Applet

CNT 4714: Java Networking Page 84 Dr. Mark Llewellyn ©

Example 1 – SiteSelector Applet (cont.)

// SiteSelector.java

// This program loads a document from a URL.

import java.net.MalformedURLException;

import java.net.URL;

import java.util.HashMap;

import java.util.ArrayList;

import java.awt.BorderLayout;

import java.applet.AppletContext;

import javax.swing.JApplet;

import javax.swing.JLabel;

import javax.swing.JList;

import javax.swing.JScrollPane;

import javax.swing.event.ListSelectionEvent;

import javax.swing.event.ListSelectionListener;

public class SiteSelector extends JApplet

{

private HashMap< Object, URL > sites; // site names and URLs

private ArrayList< String > siteNames; // site names

private JList siteChooser; // list of sites to choose from

// read HTML parameters and set up GUI

CNT 4714: Java Networking Page 85 Dr. Mark Llewellyn ©

Example 1 – SiteSelector Applet (cont.)

public void init()

{

sites = new HashMap< Object, URL >(); // create HashMap

siteNames = new ArrayList< String >(); // create ArrayList

// obtain parameters from HTML document

getSitesFromHTMLParameters();

// create GUI components and layout interface

add(new JLabel("Choose a site to browse"), BorderLayout.NORTH);

siteChooser = new JList(siteNames.toArray()); // populate JList

siteChooser.addListSelectionListener(

new ListSelectionListener() // anonymous inner class

{ // go to site user selected

public void valueChanged(ListSelectionEvent event)

{

// get selected site name

Object object = siteChooser.getSelectedValue();

// use site name to locate corresponding URL

URL newDocument = sites.get(object);

// get applet container

AppletContext browser = getAppletContext();

// tell applet container to change pages

browser.showDocument(newDocument);

} // end method valueChanged

} // end anonymous inner class

}; // end call to addListSelectionListener

CNT 4714: Java Networking Page 86 Dr. Mark Llewellyn ©

Example 1 – SiteSelector Applet (cont.)

add(new JScrollPane(siteChooser), BorderLayout.CENTER);

} // end method init

// obtain parameters from HTML document

private void getSitesFromHTMLParameters()

{

String title; // site title

String location; // location of site

URL url; // URL of location

int counter = 0; // count number of sites

title = getParameter("title" + counter); // get first site title

// loop until no more parameters in HTML document

while (title != null)

{

// obtain site location

location = getParameter("location" + counter);

try // place title/URL in HashMap and title in ArrayList

{

url = new URL(location); // convert location to URL

sites.put(title, url); // put title/URL in HashMap

siteNames.add(title); // put title in ArrayList

} // end try

catch (MalformedURLException urlException)

{

urlException.printStackTrace();

} // end catch

counter++;

title = getParameter("title" + counter

); // get next site title

} // end while

} // end method

getSitesFromHTMLParameters

} // end class SiteSelector

CNT 4714: Java Networking Page 87 Dr. Mark Llewellyn ©

Original SiteSelector Applet

before user selected World

Cycling News as the resource to

be opened. Once selected this

brought up the webpage shown

behind the applet invocation.

CNT 4714: Java Networking Page 88 Dr. Mark Llewellyn ©

Original SiteSelector Applet

before user selected World

Cycling News as the resource to

be opened. Once selected this

brought up the webpage shown

behind the applet invocation.

CNT 4714: Java Networking Page 89 Dr. Mark Llewellyn ©

Secure Sockets Layer (SSL)

• Most e-business uses SSL for secure on-line transactions.

• SSL does not explicitly secure transactions, but rather secures

connections.

• SSL implements public-key technology using the RSA

algorithm (developed in 1977 at MIT by Ron Rivest, Adi

Shamir, and Leonard Adleman) and digital certificates to

authenticate the server in a transaction and to protect private

information as it passes from one part to another over the

Internet.

• SSL transactions do not require client authentication as most

servers consider a valid credit-card number to be sufficient for

authenticating a secure purchase.

CNT 4714: Java Networking Page 90 Dr. Mark Llewellyn ©

How SSL Works

• Initially, a client sends a message to a server.

• The server responds and sends its digital certificate to the client for

authentication.

• Using public-key cryptography to communicate securely, the client

and server negotiate session keys to continue the transaction.

• Once the session keys are established, the communication proceeds

between the client and server using the session keys and digital

certificates.

• Encrypted data are passed through TCP/IP (just as regular packets

over the Internet). However, before sending a message with

TCP/IP, the SSL protocol breaks the information into blocks and

compresses and encrypts those blocks.

CNT 4714: Java Networking Page 91 Dr. Mark Llewellyn ©

How SSL Works (cont.)

• Once the data reach the receiver through TCP/IP, the SSL

protocol decrypts the packets, then decompresses and

assembles the data. It is these extra processes that provide an

extra layer of security between TCP/IP and applications.

• SSL is used primarily to secure point-to-point connections

using TCP/IP rather than UDP/IP.

• The SSL protocol allows for authentication of the server, the

client, both, or neither. Although typically in Internet SSL

sessions only the server is authenticated.

CNT 4714: Java Networking Page 92 Dr. Mark Llewellyn ©

2. Server hello

3. Certificate optional

4. Certificate request optional

5. Server key exchange optional

6. Server hello done

12. Change to encrypted mode

13. Finished

14. Encrypted data

15. Close messages

SERVER

1. Client hello

7. Certificate optional

8. Client Key exchange

9. Certificate verify optional

10. Change to encrypted mode

11. Finished

14. Encrypted data

15. Close messages.

CLIENT

CNT 4714: Java Networking Page 93 Dr. Mark Llewellyn ©

Details Of The SSL Protocol

• Use the diagram on the previous page to index the

steps.

1. Client hello. The client sends the server

information including the highest level of SSL it

supports and a list of the cipher suites it supports

including cryptographic algorithms and key sizes.

2. Server hello. The server chooses the highest

version of SSL and the best cipher suite that both

the client and server support and sends this

information to the client.

CNT 4714: Java Networking Page 94 Dr. Mark Llewellyn ©

Details Of The SSL Protocol (cont.)

3. Certificate. The server sends the client a certificate

or a certificate chain. Optional but used whenever

server authentication is required.

4. Certificate Request. If the server needs to

authenticate the client, it sends the client a

certificate request. In most Internet applications

this message is rarely sent.

5. Server key exchange. The server sends the client a

server key exchange message when the public key

information sent in (3) above is not sufficient for

key exchange.

CNT 4714: Java Networking Page 95 Dr. Mark Llewellyn ©

Details Of The SSL Protocol (cont.)

6. Server hello done. The server tells the client that it

is finished with its initial negotiation messages.

7. Certificate. If the server requests a certificate from

the client in (4), the client sends its certificate chain,

just as the server did in (3).

8. Client key exchange. The client generates

information used to create a key to use for

symmetric encryption. For RSA, the client then

encrypts this key information with the server’s

public key and sends it to the server.

CNT 4714: Java Networking Page 96 Dr. Mark Llewellyn ©

Details Of The SSL Protocol (cont.)

9. Certificate verify. This message is sent when a
client presents a certificate as above. Its purpose is
to allow the server to complete the process of
authenticating the client. When this message is
used, the client sends information that it digitally
signs using a cryptographic hash function. When
the server decrypts this information with the client’s
public key, the server is able to authenticate the
client.

10. Change to encrypted mode. The client sends a
message telling the server to change to encrypted
mode.

11. Finished. The client tells the server that it is ready
for secure data communication to begin.

CNT 4714: Java Networking Page 97 Dr. Mark Llewellyn ©

Details Of The SSL Protocol (cont.)

12. Change to encrypted mode. The server sends a
message telling the client to switch to encrypted mode.

13. Finished. The server tells the client that it is ready for
secure data communication to begin. This marks the
end of the SSL handshake.

14. Encrypted data. The client and the server communicate
using the symmetric encryption algorithm and the
cryptographic hash function negotiated in (1) and (2),
and using the secret key that the client sent to the server
in (8).

15. Close messages. At the end of the connection, each
side will send a close_notify message to inform the peer
that the connection is closed.

CNT 4714: Java Networking Page 98 Dr. Mark Llewellyn ©

Java Secure Socket Extension (JSSE)

• SSL encryption has been integrated into Java technology
through the Java Secure Socket Extension (JSSE). JSSE has
been an integral part of Java (not a separately loaded
extension) since version 1.4.

• JSSE provides encryption, message integrity checks, and
authentication of the server and client.

• JSSE uses keystores to secure storage of key pairs and
certificates used in PKI (Public Key Infrastructure which
integrates public-key cryptography with digital certificates
and certificate authorities to authenticate parties in a
transaction.)

• A truststore is a keystore that contains keys and certificates
used to validate the identities of servers and clients.

CNT 4714: Java Networking Page 99 Dr. Mark Llewellyn ©

Java Secure Socket Extension (JSSE) (cont.)

• Using secure sockets in Java is very similar to using the non-

secure sockets that we have already seen.

• JSSE hides the details of the SSL protocol and encryption

from the programmer entirely.

• The final example in this set of notes involves a client

application that attempts to logon to a server using SSL.

• NOTE: Before attempting to execute this application, look at

the code first and then go to page 105 for execution details.

This application will not execute correctly unless you follow

the steps beginning on page 105.

CNT 4714: Java Networking Page 100 Dr. Mark Llewellyn ©

// LoginServer.java

// LoginServer uses an SSLServerSocket to demonstrate JSSE's SSL implementation.

package securitystuff.jsse;

// Java core packages

import java.io.*;

// Java extension packages

import javax.net.ssl.*;

public class LoginServer {

private static final String CORRECT_USER_NAME = "Mark";

private static final String CORRECT_PASSWORD = "CNT 4714";

private SSLServerSocket serverSocket;

// LoginServer constructor

public LoginServer() throws Exception

{

// SSLServerSocketFactory for building SSLServerSockets

SSLServerSocketFactory socketFactory =

(SSLServerSocketFactory)

SSLServerSocketFactory.getDefault();

// create SSLServerSocket on specified port

serverSocket = (SSLServerSocket)

socketFactory.createServerSocket(7070);

} // end LoginServer constructor

LoginServer.java

SSL Server Implementation

SSL socket will listen on port

7070

Use default

SSLServerSocketFactory

to create SSL sockets

CNT 4714: Java Networking Page 101 Dr. Mark Llewellyn ©

// start server and listen for clients

private void runServer()

{

// perpetually listen for clients

while (true) {

// wait for client connection and check login information

try {

System.err.println("Waiting for connection...");

// create new SSLSocket for client

SSLSocket socket = (SSLSocket) serverSocket.accept();

// open BufferedReader for reading data from client

BufferedReader input = new BufferedReader(

new InputStreamReader(socket.getInputStream()));

// open PrintWriter for writing data to client

PrintWriter output = new PrintWriter(

new OutputStreamWriter(socket.getOutputStream()));

String userName = input.readLine();

String password = input.readLine();

if (userName.equals(CORRECT_USER_NAME) &&

password.equals(CORRECT_PASSWORD)) {

output.println("Welcome, " + userName);

}

else {

output.println("Login Failed.");

}

Accept new client

connection. This is a

blocking call that returns

an SSLSocket when a

client connects.

Get input and

output streams

just as with

normal sockets.

Validate user name and

password against

constants on the server.

CNT 4714: Java Networking Page 102 Dr. Mark Llewellyn ©

// clean up streams and SSLSocket

output.close();

input.close();

socket.close();

} // end try

// handle exception communicating with client

catch (IOException ioException) {

ioException.printStackTrace();

}

} // end while

} // end method runServer

// execute application

public static void main(String args[]) throws Exception

{

LoginServer server = new LoginServer();

server.runServer();

}

} //end LoginServer class

Close down I/O streams and the socket

CNT 4714: Java Networking Page 103 Dr. Mark Llewellyn ©

// LoginClient.java

// LoginClient uses an SSLSocket to transmit fake login information to LoginServer.

package securitystuff.jsse;

// Java core packages

import java.io.*;

// Java extension packages

import javax.swing.*;

import javax.net.ssl.*;

public class LoginClient {

// LoginClient constructor

public LoginClient()

{

// open SSLSocket connection to server and send login

try {

// obtain SSLSocketFactory for creating SSLSockets

SSLSocketFactory socketFactory = (SSLSocketFactory) SSLSocketFactory.getDefault();

// create SSLSocket from factory

SSLSocket socket = (SSLSocket) socketFactory.createSocket("localhost", 7070);

// create PrintWriter for sending login to server

PrintWriter output = new PrintWriter(

new OutputStreamWriter(socket.getOutputStream()));

// prompt user for user name

String userName = JOptionPane.showInputDialog(null, "Enter User Name:");

// send user name to server

output.println(userName);

LoginClient.java

Client Class for SSL Implementation

SSL socket will listen on port

7070

Use default

SSLSocketFactory to

create SSL sockets

CNT 4714: Java Networking Page 104 Dr. Mark Llewellyn ©

// prompt user for password

String password = JOptionPane.showInputDialog(null, "Enter Password:");

// send password to server

output.println(password);

output.flush();

// create BufferedReader for reading server response

BufferedReader input = new BufferedReader(

new InputStreamReader(socket.getInputStream ()));

// read response from server

String response = input.readLine();

// display response to user

JOptionPane.showMessageDialog(null, response);

// clean up streams and SSLSocket

output.close();

input.close();

socket.close();

} // end try

// handle exception communicating with server

catch (IOException ioException) {

ioException.printStackTrace();

}

// exit application

finally {

System.exit(0);

}

} // end LoginClient constructor

// execute application

public static void main(String

args[])

{

new LoginClient();

}

}

CNT 4714: Java Networking Page 105 Dr. Mark Llewellyn ©

Creating Keystore and Certificate

• Before you can execute the LoginServer and LoginClient

application using SSL you will need to create a keystore and

certificate for the SSL to operate correctly.

• Utilizing the keytool (a key and certificate management tool)

in Java generate a keystore and a certificate for this server

application. See the next slide for an example.

• We’ll use the same keystore for both the server and the client

although in reality these are often different. The client’s

truststore, in real-world applications, would contain trusted

certificates, such as those from certificate authorities (e.g.

VeriSign www.verisign.com etc.).

http://www.verisign.com/

CNT 4714: Java Networking Page 106 Dr. Mark Llewellyn ©

Creating Keystore and Certificate

Note requirements for

password.

CNT 4714: Java Networking Page 107 Dr. Mark Llewellyn ©

Creating Keystore and Certificate
Viewing the keystore

contents after its creation.

Notice the entry type is

keyEntry which means that this

entry has a private key

associated with it.

CNT 4714: Java Networking Page 108 Dr. Mark Llewellyn ©

Creating Keystore and Certificate

Export the certificate into

a certificate file.

Contents of the

certificate.

CNT 4714: Java Networking Page 109 Dr. Mark Llewellyn ©

Creating Keystore and Certificate

Import the certificate

into a new truststore.

CNT 4714: Java Networking Page 110 Dr. Mark Llewellyn ©

Creating Keystore and Certificate
View the contents of the

truststore.

Note that the entry type is trustedCertEntry,

which means that a private key is not available

for this entry. It also means that this file is not

suitable as a KeyManager's keystore.

CNT 4714: Java Networking Page 111 Dr. Mark Llewellyn ©

Launching the Secure Server

• Now you are ready to start the server executing from a

command prompt…

• Once started, the server simply waits for a connection from a

client. The example below illustrates the server after waiting

for several minutes.

Start the SSL Server executing with

this command where you replace this

password with the password you used

when you set-up the keystore.

CNT 4714: Java Networking Page 112 Dr. Mark Llewellyn ©

Launching the SSL Client

• Start a client application executing from a new command

window…

• Once the client establishes communication with the server, the

authentication process begins.
Start the SSL Client application executing with this

command where you replace this password with the

password you used when you set-up the keystore.

Since we are using the same keystore for the

server and the client…these will be the same.

CNT 4714: Java Networking Page 113 Dr. Mark Llewellyn ©

User enters

username and

password which are

sent to the server.

Authentication successful –

user is logged on.

CNT 4714: Java Networking Page 114 Dr. Mark Llewellyn ©

User enters username and

password which are sent to the

server. In this case the user

enters an incorrect password.

Authentication not successful –

user is not logged on.

CNT 4714: Java Networking Page 115 Dr. Mark Llewellyn ©

Multithreaded Socket Client/Server Example

• As a culminating example of networking and multi-threading, I’ve
put together a rudimentary multi-threaded socket-based
TicTacToe client/server application. The code is rather lengthy
and there isn’t really anything in it that we haven’t already seen in
the earlier sections of the notes. However, I did want you to see a
somewhat larger example that utilizes both sockets and threading
in Java. The code is on the course web page so try it out.

• This application is a multithreaded server that will allow two
client’s to play a game of TicTacToe run on the server.

• To execute, open three command windows, start one server and
two clients (in separate windows).

• The following few pages contain screen shots of what you should
see when executing this code.

CNT 4714: Java Networking Page 116 Dr. Mark Llewellyn ©

Start server

running…

CNT 4714: Java Networking Page 117 Dr. Mark Llewellyn ©

Start first player

thread

Indicate to first player that

server is waiting for

another player thread to

connect.

CNT 4714: Java Networking Page 118 Dr. Mark Llewellyn ©

Server

completes

connection for

second player.

Notifies Player X

that they can

make their

move.Player X is notified by

server that another

player has connected

and they can make

their move.
Second player

thread connects

to server and is

ready to play.

CNT 4714: Java Networking Page 119 Dr. Mark Llewellyn ©

Player X makes a

move by placing an

“X” marker in

location 4 of the

game board.

Player O sees the

move made by

Player X and is

now ready to

make a move.

Server validates move

made by Player X,

records board

configuration and

notifies Player O that

they can move and

redraws the board for

Player O.

CNT 4714: Java Networking Page 120 Dr. Mark Llewellyn ©

Although Player X has won

the game, this server is too

dumb to know this and allows

the game to continue

Player O is notified that Player X has

made a move and is graphically

shown the updated board layout.

Server indicates Player O is now

able to make their move. No

indication is given that the game is

technically over.

